点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:彩神app客户端_互动百科
首页>文化频道>要闻>正文

彩神app客户端_互动百科

来源:彩神app计划群2023-11-23 17:48

  

彩神app客户端

体重突然增加?有可能是因为睡眠不足******

为什么明明感觉没多吃却胖了?

为什么辛辛苦苦跑步、跳操、跳绳

体重却一点没有下降?

是不是经常问自己

到底是哪个环节出了错

体重突然增加?有可能是因为睡眠不足

现在,请认真回想一下

最近是不是熬夜了

是不是手机、电视剧太好看了

导致你睡得一天比一天晚

体重突然增加?有可能是因为睡眠不足

如果是的

那么,你减肥失败、体重增加

有可能是因为睡眠不足

  为什么睡得少会长胖?

  睡眠不足会降低基础代谢。研究显示,如果熬夜一整晚不睡,第二天的基础代谢会下降5%,进食后的代谢率会降低20%,从而导致代谢消耗量减少。长时间睡眠不足还会使身体出现疲劳乏力、精神萎靡等症状,久而久之会影响到胰岛素的分泌,也会抑制脂肪的分解,从而出现身体发胖的现象。

  睡眠不足影响激素分泌。北京大学人民医院(呼吸)睡眠医学科主任医师董霄松表示,睡眠不足皮质醇就会继续保持较高的分泌水平,这种分泌异常可能会导致暴饮暴食。还有研究发现睡眠不足导致超重与肥胖的发生,可能与瘦素、胃饥饿素之间的平衡被打破有关。睡眠时间不足会降低血清瘦素水平、升高胃饥饿素水平,增加饥饿感及食欲,增加胆固醇、饱和脂肪酸的摄入量。

  睡眠不足会让人的食欲增加。数据显示,睡眠不足的人,每天吃的食物总热量要比那些睡眠充足的人高出22%!这可能是因为睡眠不足,会减弱大脑额叶的活动,进而会减弱我们的自控力,受食物的干扰会更加明显,也就更容易暴饮暴食。

体重突然增加?有可能是因为睡眠不足

图源:摄图网

  长期睡眠不足对身体有什么影响?

  内分泌紊乱。睡眠时间是分泌很多重要激素的黄金时间,如甲状腺激素、性激素、褪黑素等。

  甲状腺激素水平过低,会导致皮肤变得干燥粗糙,影响体温调节,导致黏液性水肿等。性激素分泌不足,会让肌肤状态变差,女性卵巢囊肿、子宫内膜异位、子宫肌瘤、乳腺增生等妇科疾病的风险也会增加。褪黑素是身体抗氧化的重要激素,如果褪黑素无法分泌,可能会导致人体早衰。

  阻碍人体代谢。晚上9点至凌晨1点是人体免疫系统最关键的时间,在睡眠状态下,吞噬细胞会主动吞噬坏死组织,进行新陈代谢,将坏死的组织、代谢产物排出体外。如果这段时间没有良好的睡眠状态,就会影响自身代谢。

  降低免疫力、损害大脑。睡眠不足会降低白细胞吞噬能力,导致身体免疫细胞发生异常。免疫系统无法正常工作,身体就无法对细菌、病毒、癌细胞等进行抵抗,让疾病趁虚而入。同时,睡眠不足也会损伤人体认知功能,使人健忘、精神恍惚、注意力难以集中,对学习工作效率有非常大的危害。

  怎样才能拥有高质量睡眠?

  每个人的最佳睡眠时间不同,有的人睡觉6小时,一天都可以精力充沛。有的人必须睡满8小时,不然就无精打采。找到适合自己的最佳睡眠时间,每天按照习惯入睡,有利于提升睡眠质量。

体重突然增加?有可能是因为睡眠不足

图源:沧州市人民医院资讯号

  晚上不宜大量吸烟饮酒。研究发现,成人饮酒与睡眠时间减少存在相互作用,增加了血糖异常的风险。吸烟的人,特别是在夜间吸烟的人,睡眠潜伏期更长,觉醒次数更多,睡眠质量更差,睡眠时间更短。建议不吸烟、限制饮酒,特别是在将要睡觉的时候,以获得健康的睡眠和最佳的代谢调节。

  睡觉前2个小时不宜进食。因为在进食后,会引起胃部的血液循环增加,其他组织器官也会受到影响。特别是会刺激大脑,使得大脑出现兴奋症状,导致不能很快进入睡眠状态。

  营造良好的睡眠环境。入睡时,卧室的温度和湿度要适当。卧室还要保持良好的卫生清洁状况,保证空气流通顺畅。夜晚要保持安静,拉上窗帘,使用舒服的助眠用品,缓解焦虑和压力。舒心的睡眠环境,有助于深度睡眠。

  固定睡眠时间。每个人都有自己的生物节律,找准自己的生物钟,才能获得高质量睡眠。到底应该几点睡觉没有统一标准,不过,一般建议大家晚上10~11点入睡。可以设置个睡眠闹钟,每天晚上提醒自己“到点啦,该睡觉啦”!

  参考资料:

  睡眠不足不规律,可能真的会让人发胖[N]. 科技日报,2022-08-17(008).

  睡眠不足或增加肥胖风险Nature子刊总结的改善睡眠几大策略[J].科学大观园,2022(22):34-35.

  科普中国、健康时报、萧山疾控、沧州市人民医院资讯号等

  整理:刘雪洁

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 把VR做有趣,任天堂花了24年

  • 一体式运动座椅 中华V9最新内饰谍照曝光

独家策划

推荐阅读
彩神app下载 李彦宏夫妇或成“老赖”?百度回应
2024-08-01
彩神app官方网站收评:创业板指下行跌2.55% 近300股跌停
2024-03-19
彩神app官网刘晓彤龚翔宇助阵天津女排 李盈莹:伤病好转状态越来越好
2024-01-18
彩神app充值吴谢宇友人:他追女生时一直用化名 想当“小三”
2023-09-28
彩神app返点海淀四道口限竞房定名「天恒·学院里」
2024-04-25
彩神app攻略粤媒:华南虎掐住对手“七寸”新疆仅有一名控卫
2024-03-15
彩神app走势图重复使用的食用油会促进乳腺癌转移
2024-07-16
彩神app开户职业年金是什么 入市之后会怎样?
2024-03-20
彩神app网投 私心重,美难当巴以问题“和事佬” “灭火”意图难实现
2023-12-06
彩神app客户端下载天津西青区新增1例本土阳性感染者 系葫芦岛返津人员
2024-02-14
彩神app技巧中信证券:“盈利底”深度已明,经济将延续企稳态势
2024-03-26
彩神app登录 英超-福布斯韩国名人榜:孙兴慜位列第9 收入排第4
2023-09-25
彩神app官网网址如何看突如其来的六连阴
2023-11-06
彩神app平台周杰伦晒与儿子女儿合影
2024-04-08
彩神app官网平台拒绝购买iPhoneX 女友提出分手
2024-07-11
彩神app娱乐县人社局副局长被查后 基层医疗机构46人自首退赃
2023-12-31
彩神app必赚方案复联英雄限量款美食微博派送
2024-01-23
彩神app邀请码朱炯怒喷:做亏心事生孩子没菊花 曝足协追问骂谁呢
2024-05-03
彩神app论坛一批股票一季度亏光去年全年盈利 多只翻倍股在列
2024-02-29
彩神app注册网实拍:城管粗暴铲翻老太菜摊
2024-08-19
彩神app手机版"熊猫妈"主张自幼培养孩子独立性
2024-03-13
彩神app交流群假期期权双卖收时间价值策略好不好?
2024-03-23
彩神app下载关羽诛杀文丑的真实原因
2024-05-19
彩神app玩法 海南9000元假宫颈癌疫苗案开出罚单:没收医院违法所得,罚款8000元
2024-05-17
加载更多
彩神app地图